隔膜泵的出厂检验
一、隔膜泵检验装置的组成
一个完整的水泵检验装置应包括以下几个主要部分:
1).动力源;2).传动系统;3).测量与控制系统;4).辅助系统;
二、各组成部分的设计要素
a、明确试验对象,确定动力源功率各单位设计检验装置的目的有所不同,有的只是为本单位的产品作试验用,有的需要为各种各样的泵服务(如检验中心),所以动力源的功率应根据实际情况来确定。
水泵检验标准计算公式如下:
P动=P泵/(η齿×η扭×η离×η泵)=Q×P×H/(102×η齿×η扭×η离×η泵)
式中:P动所需的动力源输出功率 KWP泵被试泵的水功率 KWη齿齿轮箱效率%
η扭扭矩仪效率%η离离合器效率%η泵水泵的效率% Q水泵的流量m3/s
H水泵的扬程mV水的重度 Kg/m3
我们可以以η泵为参考量,通过计算,作出P动与P泵的关系曲线,计算中可以假定假定η齿、η扭和η离分别为0.95、0.98和0.98。当P泵和η泵已知时,就可从确定所需的动力源输出功率。
b、动力源型式
目前常见的有电动机与柴油发动机两种。前者一般不调速,适用于一般的工业泵。由于各种工业泵的转速有差异,因此泵的流量压力功率等参数一般需要通过特定转速(电动机转速)下的测量值,换算到泵的规定转速下的对应值,导致测量误差放大。前者若需调速,直流电动机可用可控硅调速,交流电动机可用变频调速,但成本较高。当然,使用电动机却有噪声相对较低,无其他污染的优点;后者适用于消防泵,因为消防泵有工况的变化,要求转速变化。柴油发动机调速比较方便。调节油门大小再配以齿轮箱,可以获得较大的转速范围,且成本相对较低。使用柴油发动机存在着噪声大,有烟气排放问题。
究竟选用哪一种动力源,要根据检验装置的设计目的及单位在场地、经费及现有的相关条件而定。
传动系统
对使用柴油发动机的水泵检验装置,有传动装置的问题。传动系统主要由离合器和齿轮箱组成。对齿轮箱的设计,主要应考虑两个问题:
a、速比确定
对工业泵而言,中心高800mm以下的泵,其转速一般为1450r/min和2900~2950r/min。对消防泵而言,其转速千差万别,一般为2000~4000r/min。
齿轮箱速比的确定,既要考虑满足不同转速泵的试验要求,又要考虑让发动机在最大扭矩点附近工作。
经分析,下述五种转速范围基本上可覆盖各种消防泵和工业泵的试验要求:
1450 r/min;2000~2400 r/min;2900~2950 r/min;3000~3600 r/min;3600~4000 r/min。
在选定合适的发动机之后,根据该发动机的转速和上述的五种转速范围,就可以确定相应的速比。
b、输出轴转向
泵有正转泵、反转泵之分,考虑到检验装置的通用性,要求变速箱的输出轴在确定的各种转速范围内均可正转或反转。
测量与控制系统
欲实现自动化测试,系统应由传感器、二次仪表、计算机、接口板、伺服机构、采集器、组合屏和微机软件等组成,以实现在控制室内对柴油机启动、油泵启动、紧急停车、柴油机增减速和电动阀的控制;实现柴油机高水温、高油温、低油压和齿轮箱低油压、高油温的报警;实现水泵参数的自动采集和处理。下面就几个具体问题说明如下:
a.隔膜泵检验标准测量内容
除水泵运行参数(转速、流量、压力或扬程、功率)和轴承座温度外,还应包括发动机的运行参数(水温、油温、油压、发动机转速),齿轮箱的油压、油温以及辅助装置的相关参数(如动力间温度、油箱油位高度、蓄电池电压等),还应包括齿轮箱档位与转向的显示。
b.水泵检验标准测量精度
与测量水泵性能参数相应的传感器和二次仪表,其系统的测量精度应符合GB3216《离心泵、混流泵、轴流泵和旋涡泵试验方法》的规定,其它各种测量仪表的精度根据需要确定。一次、二次仪表的精度可供参考。
应包括:油泵启动,柴油机启动、应急停车、增减速;电动阀控制(控制流量);水泵工况切换进而实施试验的程序控制;动力间冷却装置的自动启动控制;柴油机水温、油温、油压和齿轮箱油压油温的自动监视与报警。
d.水泵检验标准注意事项
为了提高测量的自动化程度,需配备电动阀来调节流量。电动阀应保证在规定的压力下能双向运作(流量逐渐增大或减小),一次点动的调节量0.1/s为宜;
试验现场与控制室均应有水泵和发动机、齿轮箱运行参数的显示,以保证运行安全可靠;
当水泵没有止回阀的情况下,压力测量仪表之前应设置阀门,以免一旦出现真空造成仪表损坏;
强、弱电应分开,以免互相干扰,影响测量精度;
测量水泵轴承座温度中,由于离旋转部件近,宜用磁性温度探头,以免试验人员受到伤害;
尽可能使用稳压装置以提高测压精度;
二次仪表的输出信号宜采用相同型式、同一标准输出信号范围,便于与采集器、计算机接口相连:
自动化测量中,遥测数据是通过二次仪表变送后进入数据采集器的。由于二次仪表变送电压的负极悬浮,使得多路电压变送信号与数据采集器无法直接连接,此时可采用隔离模块方法,使多路信号经隔离模块变送后达到负极一致,实现变送信号与数据采集器的连接。这种连接虽然可以实现数据传输,但二次仪表变送数据内所迭加的波纹电压无法改善,以致数据显示值波动较大。为了对遥测数据与数据采集器连通过程中的波纹进行处理,可设计一种电平转换方法的接口板,在电平转换过程中进行波纹抑制,以保证数据显示值稳定。
辅助系统
这里特别需要提一下关于水泵升降平台的问题。
由于发动机、齿轮箱、扭矩仪相互之间的连接关系是固定不变的,也就是说,当扭矩仪位置确定后,其输出端的中心高度是固定不变的。为了适应不同中心高的水泵的试验要求,需要有一个安装泵用的升降平台,要求平台可以自由升降到某一预定高度,然后靠加垫及泵的轴向移动等来调节泵的输入轴与扭矩仪输出轴的对中程度以及连接法兰间的平行度和间隙的要求。根据试验泵的这一安装特性,对升降平台的高度调节要求完全自动化似乎没有必要,然而完全靠加垫等来调节也显得太繁杂,影响工作效率。因此,设计一个半自动化的水泵升降平台是合适的。
三、隔膜泵检验标准建议
被测泵为工业泵时,动力源宜采用电动机;被测泵为消防泵时,动力源宜采用柴油发动机;测量控制中的问题,如文中“测量与控制系统”一节所述,在装置设计中应引起足够的重视;简便的半自动的水泵升降平台是一个合适的选择。